Уважаемые студенты и преподаватели кафедры!
В среду 22 февраля в 17:00 состоится семинар кафедры. Тема:
Оптический Фурье-преобразователь двумерных объектов как инструмент определения фрактальной размерности
Докладчик: Матасов М.Д., к.ф.-м.н., н.с. ОИКС ОНИ ПИЯФ НИЦ КИ.
Место проведения: НИИ Физики, корпус «И», 1 этаж помещения профиля НСФ кафедры ЯФМИ, Лекционный Холл.
Аннотация:
Основным параметром, свидетельствующим о том, что та или иная структура представляет собой фрактал, является размерность Хаусдорфа [1]. Нами предлагается способ, в основу которого положен закон зависимости интенсивности рассеянного излучения от переданного импульса I(Q)~Q^(-D) [2]. В этом выражении показателем степени является фрактальная размерность D. Как известно, спектр рассеянного излучения является квадратом модуля прямого преобразования Фурье, взятого от функции рассеивающей плотности I(Q)~|F|^2. В случае, если рассеивающий объект является двумерным и расположенным перпендикулярно потоку излучения, спектр интенсивности рассеянного излучения будет являться квадратом модуля двумерного прямого преобразования Фурье, взятого от плоского изображения двумерного объекта. Для получения зависимости I(Q) экспериментально нами предложено реализовать Фурье-оптическую схему. В данной схеме плоско-параллельный волновой фронт коллимированного пучка света попадает перпендикулярно плоскости изучаемой двумерной фрактальной структуры. Непосредственно сразу за исследуемым объектом устанавливается собирающая линза, в фокусе которой расположен детектор. В фокальной плоскости линзы распределение интенсивности прошедшего через неё света представляет собой квадрат модуля искомого преобразования Фурье. В итоге на детекторе, который находится в фокальной плоскости линзы, мы получаем интерференционную картину из дальней зоны, которая нам и требовалась. Проводя усреднение по углу, отождествляя расстояние в направление от центра интерференционной картины к краям с переданным импульсом, мы получаем зависимость интенсивности рассеянного излучения от переданного импульса I(Q). Построив в двойном логарифмическом масштабе полученный спектр, по углу наклона прямой к оси волновых чисел можно найти размерность структуры.
1. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York (1983).
2. J. Teixeira J. Appl. Cryst. 21 (1988), 781-785